Zur Lewis-Acidität von Nickel(0), XII¹⁾

Dimethylaluminiumhydrid-Komplexe von Nickel(0)

Klaus-Richard Pörschke*, Wolfgang Kleimann, Yi-Hung Tsay²), Carl Krüger²⁾ und Günther Wilke

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-4330 Mülheim a. d. Ruhr

Eingegangen am 21. Dezember 1989

Key Words: Aluminium hydride complexes / Nickel(0)

On the Lewis Acidity of Nickel(0), XII¹⁾. – Dimethylaluminium Hydride Complexes of Nickel(0)

Ni(CDT) reacts with (1-azabicyclo[2.2.2]octane)dimethylaluminium hydride in pentane to form the yellow crystalline addition compound $(C_7H_{13}N)(Me_2AlH)Ni(CDT)$ (2c). In its crystal structure 2c exhibits a Ni-H-Al three-center bond. Displacement of the CDT ligand of 2c with ethene in pentane at 0°C yields light brown crystals of $(C_7H_{13}N)(Me_2AlH)Ni(C_2H_4)_2$

 $Ni(CDT)^{3,4}$ und $Ni(C_2H_4)_3^{5}$ reagieren mit Alkalimetall-hydridoaluminaten $M_A^+HAlR_3^-$ ($M_A = Li$, Na; $R = CH_3$, C_2H_5 , iC_4H_9) in Gegenwart starker n-Donoren (THF, TMEDA, PMDTA) in etherischer Lösung bei tiefen Temperaturen zu thermolabilen Hydridotrialkylaluminiumniccolat(0)-Komplexen wie [MA(n-Do nor_{n}^{1} [R₃Al-H-Ni(CDT)]⁻⁶ und [M_A(n-Donor)_n]⁺ [R₃Al-H- $Ni(C_2H_4)_2$]⁻⁷⁾. Chemisches Verhalten sowie ¹H- und ¹³C-NMR-Spektren der Komplexe lassen für CDT als π -Liganden auf das Vorliegen von Al-H-Ni-Mehrzentrenbindungen mit vergleichsweise starken Al-H- und schwachen H-Ni-Bindungsteilen schlie-Ben, während die Ethen-Komplexe "ausgewogene" Bindungsstärken und Ladungsverteilungen der Al-H-Ni-Mehrzentren-Bindungsteile zeigen. In Komplexen $[Na(THF)_6]^+[R_3A] - H Ni(C_2H_4)_2]^-$ führt die Verdrängung der Ethen-Liganden mit CO bei -78°C zur Bildung von (THF)4(NaH)Ni(CO)3 unter Freisetzung der Trialkylaluminium-Komponente⁷⁾. Die genannten Verbindungen spiegeln die zuvor schon für Methyllithium-8) und Methylenphosphoran-Nickel(0)-Komplexe⁹⁾ aufgezeigte Akzeptorstärke von Nickel(0) wider, die von Ni(CDT) über die Ni(C₂H₄)₂- zur Ni(CO)₃-Gruppe hin ansteigt. Oberhalb -70° C wandeln sich die Ethen-Komplexe unter Ablösung der R3Al-Donor-Komplexe in zweikernige Alkalimetall-hydrido-diniccolat(0)-Komplexe [MA(n-Do $nor)_{n}$] + [HNi₂(C₂H₄)₄] - ^{10,11} um.

Mit Diethylaluminiumhydrid bildet Ni(CDT) in Pentan und Ether bei $-78\,^{\circ}$ C die gelben feinkristallinen Verbindungen (Et₂AlH)Ni(CDT) (1a) und (Et₂O)(Et₂AlH)Ni(CDT) (1b)¹²⁾, deren Zusammensetzung durch Elementaranalysen (Al, Ni) und die ¹H-NMR-Spektren bestimmt wurde. Sie zersetzen sich bereits bei $-60\,^{\circ}$ C und wurden nicht weiter charakterisiert. Ni(C₂H₄)₃ bewirkt bei $-78\,^{\circ}$ C die Insertion von Ethen in die Al-H-Bindung von Et₂AlH unter Bildung von Triethylaluminium^{12a)}. In Ergänzung zu Untersuchungen über die Wechselwirkung von Nickel(0)-Komplexen mit hydridischem Wasserstoff^{6,7,10,11} interessierten wir uns für Verbindungen des Typs (n-Donor)(R₂AlH)Ni(π -Ligand)_n. In Vorversuchen zeigte sich, daß Komplexe mit R = Et, π -Ligand = CDT auch von den Donorliganden THF (1c. (4), which is also obtained from $Ni(C_2H_4)_3$ and $(C_7H_{13}N)$ -(Me₂AlH). Complex 4 is converted by CO at -78°C into the colorless carbonyl complex $(C_7H_{13}N)(Me_2AlH)Ni(CO)_3$ (5). 2c and 4 may be considered as model compounds for intermediates of the nickel(0)-catalyzed hydroalumination reaction of alkenes.

Zers. -60 °C), 1-Azabicyclo[2.2.2]octan (1d, 10 °C) oder TMEDA (1e, 0 °C) nur unzureichend stabilisiert werden. Aus diesem Grund haben wir die Dimethylaluminiumhydrid-Derivate (n-Donor)(Me₂AlH)Ni(π -Ligand)_n mit den π -Liganden CDT, Ethen und CO sowie den n-Donoren Ether, THF, TMEDA und 1-Azabicyclo[2.2.2]octan hergestellt und deren Eigenschaften bestimmt.

	(n-Donor)(Et ₂ AIH)Ni(CDT)						
	10	16	1c	1d	1e		
n-Donor	-	Ether	THF	C ₇ H ₁₃ N*)	TMEDA		

*) 1-Azabicyclo[2.2.2]octan

Dimethylaluminiumhydrid und seine Solvat-Komplexe

Das zuerst von Schlesinger erhaltene¹³⁾ Dimethylaluminiumhydrid ist bei 20°C überwiegend trimer aufgebaut, wobei die Assoziation über Wasserstoffbrücken erfolgt¹⁴⁾. Massenspektrometrisch ließen sich bei 60–100°C Verdampfungstemperatur auch höhere Assoziate nachweisen¹⁵⁾. Bei 170°C liegt in der Gasphase ausschließlich das Dimere vor, von dem die Struktur (Al–H 1.68 Å, Al–C 1.95 Å, Al··· Al 2.62 Å, Al–H–Al 103°) durch Elektronenbeugung bestimmt wurde¹⁶⁾. Das in dieser Arbeit eingesetzte (CH₃)₂AlH wurde nach Ziegler aus (CH₃)₂AlCl und Alkalimetallhydrid über die Zwischenstufe eines M_AH₂Al(CH₃)₂ gewonnen¹⁷⁾.

Mit Ethern bilden Dialkylaluminiumhydride schwache 1:1-Addukte, die IR-spektroskopisch an der Verschärfung der Bande v_{AI-H} bei 1750 cm⁻¹ erkennbar sind ¹⁴). Von Me₂AlH und Trimethylamin ist der Komplex (Me₃N)(Me₂AlH) isoliert worden ¹⁸). (Me₃N)-(Me₂AlH) (Schmp. 20°C) ist offenbar bis 100°C beständig; es sublimiert im Vakuum bei 20°C, wobei es laut Massenspektrum allerdings teilweise zerfällt. In Cyclohexan wurde ein mittlerer Assoziationsgrad von 1.34 bestimmt; zudem zeigt das ¹H-NMR-Spektrum für die AlCH₃-Protonen mehrere konzentrationsabhängige Signale, die mit dem Vorliegen unterschiedlicher {(Me₃N)(Me₂AlH)}_n-Assoziate erklärt werden¹⁸). Eine ähnliche Signalverteilung bei $\delta_{\rm H} \approx -0.95$ beobachteten wir auch für Lösungen von Me₂AlH in [D₈]THF, so daß hier offenbar entsprechende {(THF)(Me₂AlH)}_n-Assoziate vorliegen.

Aus Me₂AlH und dem stark basischen 1-Azabicyclo[2.2.2]octan erhält man in Pentan scheinbar einheitliche, große farblose Plättchen, die im Vakuum bei 50°C sublimieren. Das ¹H-NMR-Spektrum weist aber für die AlCH₃-Protonen drei scharfe Signale auf ($\delta_{\rm H} = -0.95, -0.99, -1.05$), von denen wir das intensive mittlere dem Monomeren (C₇H₁₃N)(Me₂AlH) als Hauptkomponente zuordnen, während die beiden anderen möglicherweise von Assoziat-Komplexen hervorgerufen werden. Elementaranalyse und Massenspektrum sind mit der angegebenen Zusammensetzung vereinbar; der Stoff konnte weder durch fraktionierte Kristallisation (Pentan) noch durch Vakuum-Sublimation aufgetrennt werden.

Mit der zweifach molaren Menge $C_7H_{13}N$ bildet Me₂AlH große farblose Kristalle des Bis-Addukts ($C_7H_{13}N)_2(Me_2AlH)$, dessen ¹H-NMR-Spektrum gleichfalls mehrere Komponenten ausweist. Aus Me₂AlH und TMEDA entstehen in Pentan farblose Nadeln von (TMEDA)(Me₂AlH). Bis(amin)-Addukte mit fünfbindigem Aluminium sind für R₂AlH-Verbindungen und AlH₃ seit längerem bekannt¹⁹, während sie sich für R₃Al-Verbindungen bisher nicht nachweisen ließen²⁰.

(n-Donor)(Me₂AlH)Ni(CDT)-Komplexe

Die rote Pentan-Lösung von Ni(CDT) hellt sich beim Einleiten in eine auf -78 °C gekühlte Lösung von HAl(CH₃)₂ in Pentan auf. In der orangeroten Reaktionslösung bilden sich bei -78 °C wenige feine, gelbbraune Kristalle; das Reaktionsverhalten ändert sich auch bei Zusatz von Diethylether nicht wesentlich. Dagegen entstehen mit Dimethylether und THF sofort reingelbe Lösungen, aus denen sich langsam große gelbe Kristalle von 2a (76%) bzw. feinere gelbe Kristalle von 2b (85%) abscheiden. Zugabe von 1-Azabicyclo[2.2.2]octan führt zu einem feinkristallinen Niederschlag von 2c (78%), und mit TMEDA fallen gelbe Kristalle von 2d schneeförmig aus (90%). 2c ist einfacher durch Umsetzung von Ni(CDT) mit (C₇H₁₃N)(Me₂AlH) in Ether bei 20°C herstellbar und kann aus Ether oder THF bei 0°C zu großen gelben Plättchen umkristallisiert werden [75%; Gl. (1)]. In 2d sind vermutlich beide Stickstoffatome des TMEDA-Liganden am Aluminium gebunden. Es gelang aber nicht, hierzu analog einen Bis(1-azabicyclo[2.2.2]octan)-Komplex herzustellen. Stattdessen reagiert Ni(CDT) mit (C₇H₁₃N)₂(Me₂AlH) zu 2c unter Freisetzung eines Moleküls $C_7H_{13}N$. Aus Ni(CDT) und $(C_7H_{13}N)(AlH_3)$ bzw. $(C_7H_{13}N)_2(AlH_3)$ erhält man unterhalb $-30^{\circ}C$ gelbe Kristalle des Alan-Nickel(0)-Komplexes 3.

(Me ₂ O)(Me ₂ AlH)Ni(CDT)	(THF)(Me ₂ AlH)Ni(CDT)			
2a	2 b			
(C ₇ H ₁₃ N)(Me ₂ AlH)Ni(CDT)	(TMEDA)(Me ₂ AlH)Ni(CD7			
2c	2 d			
$(C_7H_{13}N)(A$	lH ₃)Ni(CDT)			
	3			

2a, b, d sind nur bis ca. 0° C stabil, dagegen ist **2c** für einige Zeit bei 20°C beständig. **2a, b, d** sind in kaltem THF sehr gut und in Ether gut löslich, aber schwerlöslich in Pentan. Beim Lösen von **2a, b, d** in [D₈]THF werden laut ¹H-NMR- Spektren die n-Donorliganden durch Verdrängung mit $[D_8]$ THF-Molekülen freigesetzt. Im Vergleich zu **2a**, **b**, **d** ist die Löslichkeit von **2c** in THF und Ether deutlich geringer; dabei bleibt der C₇H₁₃N-Ligand auch in THF am Aluminium gebunden.

Die Verbindungen sind durch Elementaranalysen, ¹Hund ¹³C-NMR-Spektren (Daten in Tab. 1 und im experimentellen Teil) sowie Protolysen charakterisiert; für 2c wurde die Kristallstruktur röntgenographisch bestimmt. Durch Protolyse mit kaltem *n*-Butanol werden aus 2a-d, 3 die berechneten Mengen Wasserstoff und Methan entwikkelt, wobei die Ni(CDT)-Komponente unverändert bleibt. Die Verbindungen reagieren schon in der Kälte rasch mit einem Äquivalent CO zu (CDT)Ni(CO)^{3,21)}. In Lösung (THF) dissoziieren die Komplexe mit steigender Temperatur in die Ausgangskomponenten. So läßt sich für das erst bei 0° C in [D₈]THF ausreichend lösliche C₇H₁₃N-Derivat 2c im ¹H-NMR-Spektrum das Signal der Ni–H–Al-Brückenbindung bei $\delta = -4.94$ nur beobachten, wenn eine bei 0°C gesättigte Lösung von 2c im Spektrometer auf -80° C abgeschreckt und das Spektrum rasch aufgenommen wird, bevor 2c in wenigen Minuten auskristallisiert.

$(C_7H_{13}N)(Me_2AlH)Ni(C_2H_4)_2$ (4) und $(C_7H_{13}N)(Me_2AlH)Ni(CO)_3$ (5)

Eine etherische Lösung von $(C_7H_{13}N)(Me_2AlH)Ni(CDT)$ (2c) nimmt bei 0°C langsam (1 h) zwei Äquivalente Ethen auf, und aus der hellroten Reaktionslösung kristallisieren beim Abkühlen gelbbraune Nadeln von 4 (70%). Komplex 4 ist auch durch Umsetzung äquimolarer Mengen Tris-(ethen)nickel(0) mit (C₇H₁₃N)(Me₂AlH) in Pentan bei -20°C zugänglich [67%; Gl. (2)]. Die Kristalle von 4 zersetzen sich wenig oberhalb 0°C; sie sind bereits in kaltem Ether sehr gut löslich. Die Ethen-Liganden in 4 sind relativ fest gebunden; so erfolgt in Lösung mit freiem Ethen kein NMR-spektroskopisch zu beobachtender Austausch. Durch Umsetzung mit COT und COD wird das in 4 gebundene Ethen quantitativ freigesetzt; mit COD entsteht Ni(COD)₂. Im 400-MHz-¹H-NMR-Spektrum von 4 erhält man bei -80° C für die Ethen-Protonen nur ein Koaleszenzsignal $\delta_{\rm H} = 2.43$ entsprechend einer raschen Rotation der Ethen-Liganden um ihre Bindungsachsen zum Nickelatom. Der Hydrid-Wasserstoff der Ni – H – Al-Bindung liefert ein Signal bei $\delta_{\rm H} = -5.57$. Im 75.5-MHz-¹³C-NMR-Spektrum von 4 ist die Ethen-Rotation bei -110° C ausgefroren, und es werden zwei Resonanzen erhalten ($\delta_{\rm C} = 51.05, 47.5$), die bei -80° C zu einem Signal koalesziert sind.

Die etherische Lösung von 4 reagiert bei -78 °C mit drei Moläquivalenten CO unter Freisetzung von Ethen zu dem Tricarbonyl-Komplex 5, der nach Zugabe von Pentan feine farblose Nadeln bildet [59%; Gl. (3)]. Im ¹H-NMR-Spektrum (-80 °C) von 5 erscheint die Hydrid-Resonanz bei $\delta_{\rm H} = -4.31$. Im IR-Spektrum erhält man für die Ni-H-Al-Brückenbindung von 5 eine Bande v = 1670 cm⁻¹.

Tab. 1. Einige 200-MHz-¹H- und 75.5-MHz-¹³C-NMR-Daten der Komplexe ($C_7H_{13}N$)(Me₂AlH)Ni(CDT) (2c), ($C_7H_{13}N$)(Me₂AlH)-Ni(C_2H_4)₂ (4) und ($C_7H_{13}N$)(Me₂AlH)Ni(CO)₃ (5) als Lösungen in [D₈]THF. δ -Werte, TMS interner Standard; Meßtemperaturen wie angegeben

		-CH=CH-	AlCH ₃	Ni-H-Al	
2c	δ _H	4.25	-0.80	-4.94	(−80°C)
4	δ_{H}	2.40	-0.89 (d) ^{a)}	- 5.62	(−50°C)
	δ_{C}	51.0, 47.3	-9.1	-	(−110°C)
5	δ_{H}	_	-0.73 (d) ^{a)}	-4.30	(−70°C)

^{a)} Signalaufspaltung ≈ 1 Hz.

Kristallstruktur von (C7H13N)(Me2AlH)Ni(CDT) (2c)

Die Einkristall-Strukturanalyse, deren experimentelle Daten in Tab. 2 zusammengefaßt sind, wurde durch eine für CDT-Komplexe²²⁾ typische Fehlordnung der CDT-Ringe besonders erschwert. Ni(CDT) liegt im Festzustand und in Lösung als Racemat eines links- und eines rechtsgängigen Propellers vor²³⁾. Der chirale Charakter bleibt bei Besetzung der vierten Koordinationsstelle am Nikkel erhalten. Die Fehlordnung konnte im vorliegenden Fall durch Verfeinerung von entsprechenden Besetzungsfaktoren der Kohlenstoffatome (75:25) berücksichtigt werden. In Abb. 1 ist zur besseren Übersicht die Fehlordnung des CDT-Rings nicht dargestellt. Das Hydridwasserstoffatom ließ sich gut lokalisieren; es wurde in die abschließende Strukturverfeinerung mit Lage- und Schwingungsparametern aufgenommen. Tab. 3 enthält Atomkoordinaten und thermische Parameter einschließlich der fehlgeordneten Atome; in Tab. 4 und 5 sind Bindungsabstände und -winkel aufgeführt.

Wie aus Abb. 1 ersichtlich, ergibt sich durch die Koordination des Hydrid-Wasserstoffatoms an Ni(CDT) eine stark verzerrt tetraedrische Koordination des Nickels(0), wobei dieses in bekannter Weise aus der Ringebene des CDT herausgehoben ist (Ni-C 2.04-2.19 Å).

Als überraschend erwiesen sich die Koordinationsverhältnisse am Aluminium. Aus den beobachteten Bindungs-

Abb. 1. Kristallstruktur von (C₇H₁₃N)(Me₂AlH)Ni(CDT) (2c)

winkeln läßt sich ableiten, daß dem Aluminiumatom [wie in Bis(amin)-komplexierten Aluminium-Verbindungen²⁴)] eine trigonal-bipyramidale Koordinationsgeometrie zugrunde liegt, wobei die trigonale Basis durch die beiden Methylgruppen und das Hydridwasserstoffatom definiert wird. Die Abstände Al-C 1.98 Å und der Winkel C-Al-C 116° sind von ähnlicher Größe wie im dimeren Dimethylaluminiumhydrid (1.95 Å; 119°)¹⁶⁾. Von den beiden apicalen Positionen am Aluminium wird eine vom N-Atom des C₇H₁₃N-Liganden belegt, während die gegenüberliegende unbesetzt ist. Der Abstand Al-N 2.06 Å entspricht den für vierfach koordiniertes Aluminium angetroffenen Werten²⁴⁾. Die Verlängerung des Al-N-Vektors weist zum Wasserstoffatom am CDT-Kohlenstoffatom C9 (Abstand C9-Al 3.13 Å). Dieses befindet sich mit einem Abstand von 2.67 Å zu Aluminium außerhalb dessen direkter Bindungssphäre [kovalente Radien: Al 1.20; H 0.45 Å. Zum Vergleich: der Abstand von (C9)H zu Ni beträgt 2.60 Å].

Von besonderem Interesse ist der Charakter der Ni - H - Al-Mehrzentrenbindung. Der Abstand Ni - H1.65 Å in 2c ist mit dem in einer Ni⁽¹⁾(u-H)₂Ni⁽¹⁾-Gruppe $(Ni - H 1.6; Ni - Ni 2.44 \text{ Å}; Ni - H - Ni \text{ ca. } 99^\circ)^{25}$, denen im $(C_2H_4)_2Ni^{(0)} - H - Ni^{(0)}(C_2H_4)_2$ -Anion (Ni – H 1.42 und 1.52; Ni – Ni 2.60 Å; Ni – H – Ni $(25^{\circ})^{10}$ sowie in $(C_2H_4)_2Ni^{(0)}$ – $H(Li) - Ni^{(0)}(C_2H_4)_2$ (Ni – H 1.51 und 1.62; Ni – Ni 2.58 Å; $Ni - H - Ni \ 111^{\circ})^{11b}$ zu vergleichen. Für einen Vergleich des Abstands Al – H 1.57 Å in **2c** bieten sich Me₂Al(μ -H)₂AlMe₂ $(Al-H 1.68; Al-Al 2.62 Å; Al-H-Al 103^{\circ})^{16}$ und das $Me_3Al - H - AlMe_3$ -Anion (Al - H 1.65 Å; Al - H - Al 180°)²⁶⁾ an. Aus der Datenübersicht geht hervor, daß weder die Abstände Ni-H und Al-H noch der für 2c gefundene Winkel Ni-H-Al 116° von den Werten her außergewöhnlich sind. Der Ni-Al-Abstand von 2.73 Å läßt derzeit keinen Rückschluß auf den Ni-Al-Bindungsgrad zu.

Tab. 2. Daten zur Kristallstrukturanalyse von 2c*)

Formel: C₂₁H₃₈AlNNi, Molmasse: 390.2, Kristallgröße: 0.25 x 0.58 x 0.90 mm, a = 22.060(2), b = 14.261(1), c = 13.075(2) Å, V = 4113 Å³, d_{ber} = 1.26 gcm⁻³, μ = 9.91 cm⁻¹, Z = 8, Raumgruppe Pbca, λ = 0.71069 Å Nonius-CAD4-Diffraktometer, Meßmethode ω /20, gemessene Reflexe 6538 (+h,+k,+1), sin0/Amax 0.70, beobachtete Reflexe 3909

(I>2 σ (I)), verfeinerte Parameter 269, R = 0.042, R_w = 0.048 (w = $1/\sigma^2$ (Fo)), max. Restelektronendichte: 0.43 eÅ-3.

*) Weitere Einzelheiten zur Kristallstrukturanalyse können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, 7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-53973, der Autorennamen und des Zeitschriftenzitats angefordert werden.

Tab. 3. Atomkoordinaten und isotrope thermische Parameter [Å²] von 2c. $U_{eq} = 1/3 \sum_{i} \sum_{i} U_{ij} a_i^* a_j^* \bar{a}_i \cdot \bar{a}_j$

Atom	x	у	Z	U _{eq}
Ni	0.1098(1)	0.1007(1)	0.1031(1)	0.019(1)
Al	0.2107(1)	0.1752(1)	0.1927(1)	0.020(1)
Ν	0.2939(1)	0.1534(1)	0.1254(2)	0.018(1)
C(1)	0.1138(2)	-0.0436(3)	0.1439(3)	0.027(2)
C(2)	0.0931(2)	-0.0335(3)	0.0452(3)	0.025(2)
C(3)	0.1249(4)	-0.0411(7)	-0.0525(8)	0.038(4)
C(4)	0.1112(2)	0.0459(3)	-0.1181(3)	0.033(3)
C(5)	0.1129(2)	0.1377(3)	-0.0593(3)	0.030(2)
C(6)	0.0658(2)	0.1805(3)	-0.0147(3)	0.031(2)
C(7)	0.0659(3)	0.2785(4)	0.0316(5)	0.035(3)
C(8)	0.0431(4)	0.2764(6)	0.1427(7)	0.037(4)
C(9)	0.0693(2)	0.1942(3)	0.2048(3)	0.031(2)
C(10)	0.0414(2)	0.1077(3)	0.2082(3)	0.036(2)
C(11)	0.0537(4)	0.0319(6)	0.2862(6)	0.028(3)
C(12)	0.0702(2)	-0.0588(3)	0.2314(3)	0.028(2)
C(13)	0.2203(1)	0.1175(2)	0.3294(2)	0.032(2)
C(14)	0.2071(1)	0.3140(2)	0.1886(3)	0.035(2)
C(15)	0.3056(1)	0.0501(2)	0.1136(3)	0.029(2)
C(16)	0.3699(1)	0.0310(2)	0.0745(3)	0.030(2)
C(17)	0.3970(1)	0.1223(2)	0.0357(2)	0.030(2)
C(18)	0.3516(1)	0.1665(2)	-0.0389(2)	0.034(2)
C(19)	0.2955(1)	0.1967(2)	0.0209(2)	0.028(2)
C(20)	0.3451(1)	0.1943(2)	0.1855(2)	0.029(2)
C(21)	0.4051(1)	0.1891(2)	0.1253(3)	0.035(2)
C(1a)	0.0855(6)	-0.0371(9)	0.135(1)	0.021(3)
C(2a)	0.1324(6)	-0.0454(8)	0.069(1)	0.023(2)
C(3a)	0.138(1)	-0.041(2)	-0.047(3)	0.025(6)
C(4a)	0.1367(7)	0.037(1)	-0.104(1)	0.036(4)
C(5a)	0.0897(5)	0.1041(9)	-0.0581(9)	0.021(2)
C(6a)	0.1051(6)	0.1964(8)	-0.0264(9)	0.020(2)
C(7a)	0.0544(9)	0.264(1)	0.000(1)	0.036(5)
C(8a)	0.042(1)	0.269(2)	0.116(2)	0.022(5)
C(9a)	0.0392(5)	0.1693(8)	0.1573(9)	0.021(2)
C(10a)	0.0760(5)	0.1375(8)	0.2421(9)	0.018(2)
C(11a)	0.061(1)	0.048(2)	0.301(2)	0.030(6)
C(12a)	0.0921(8)	-0.038(1)	0.253(1)	0.041(5)
н`́	0.184(1)	0.111(2)	0.106(2)	0.04(1)

Diskussion

Die Verbindungen 1-4 gehören zur Gruppe der seltenen Übergangsmetall-Komplexe, in denen am Übergangsmetall ausschließlich ein Alken und hydridischer Wasserstoff gebunden sind. Wie gezeigt wurde, lassen sich Addukte von Dialkylaluminiumhydriden R₂AlH an (Alken)nickel(0)-

Tab. 4. Bindungsabstände von 2c [Å]

Ni	- At	2.731(1)	N ~ C(20)	1.495(4)
Ni	- C(1)	2.128(4)	C(1) - C(2)	1,377(6)
Ni	- C(2)	2.092(4)	C(1) - C(12)	1.510(6)
Ni	- C(5)	2.190(4)	C(2) - C(3)	1,46(1)
Ni	- C(6)	2.147(4)	C(3) - C(4)	1.54(1)
Ni	- C(9)	2.083(4)	C(4) - C(5)	1.518(6)
Ni	- C(10)	2.044(4)	C(5) - C(6)	1.340(6)
Ni	- H	1.65(3)	C(6) - C(7)	1.523(7)
Αi	– N	2.060(2)	C(7) - C(8)	1.54(1)
At	- C(13)	1.979(3)	C(8) - C(9)	1.54(1)
Al	- C(14)	1.982(3)	C(9) - C(10)	1.380(6)
Al	- H	1.57(3)	C(10) - C(11)	1.511(9)
N	- C(15)	1.504(3)	C(11) - C(12)	1.523(9)
N	- C(19)	1.499(4)		

Tab. 5. Bindungswinkel von 2c []

н	_	Ni	– AI	31(1)	C(19) -	N	- C(15)	107.8(2)
C(10)	-	Ni	- C(9)	39.0(2)	C(19) -	Ν	- A1	110.4(2)
C(10)		Ni	– Al	107.1(1)	C(15) ~	N	– Al	110.1(2)
C(6)	-	Ni	- C(5)	36.0(2)	C(12) -	C(1)	- C(2)	120.9(4)
C(6)	-	Ni	– AI	118.1(1)	C(3) -	C(2)	- C(1)	130.7(5)
C(5)	-	Ni	– Al	107.3(1)	C(4) -	C(3)	- C(2)	109.4(6)
C(2)	-	Ni	- C(1)	38.1(2)	C(5) -	C(4)	~ C(3)	114.1(5)
C(2)	-	Ni	– Al	130.9(1)	C(6) -	C(5)	- C(4)	126.4(4)
C(1)	-	Ni	– Al	103.6(1)	C(7) -	C(6)	- C(5)	126.2(4)
H	-	A۱	– N	86(1)	C(8) -	C(7)	- C(6)	110.9(5)
H	-	Αl	– Ni	33(1)	C(9) -	C(8)	- C(7)	112,9(6)
C(14)) -	AL	- C(13)	116.4(1)	C(10) -	C(9)	- C(8)	122.0(5)
N	-	A١	– Ni	119.0(1)	C(11) -	C(10)	-C(9)	125.6(4)
C(20)) –	Ν	- C(19)	107.5(2)	C(12) -	Cin	-C(10)	109.5(5)
C(20) –	Ν	- C(15)	107.8(2)	C(11) -	C(12)	$-\dot{\mathbf{C}(1)}$	112.7(4)
C(20)) –	Ν	– AÌ	113.0(2)	AI –	н	– Ni	116(2)
_	_							

Komplexe für $\mathbf{R} = \mathbf{CH}_3$ als einfachsten Substituenten und bei zusätzlicher Koordination eines starken Donorliganden am Aluminium erheblich stabilisieren. Der Kristall-Struktur von $2\mathbf{c}$ ist zu entnehmen, daß am Aluminium prinzipiell zwei Donorliganden gebunden werden können, wie dies offenbar in $2\mathbf{d}$ für das zweizähnige TMEDA der Fall ist. Die Koordination nur eines monodentaten Amin-Liganden in $2\mathbf{c}$ (sowie 3, 4) ist vermutlich sterisch bedingt [(C9)H-Wechselwirkung].

Die mit den n-Donoren Dimethylether, THF, TMEDA oder 1-Azabicyclo[2.2.2]octan erhaltenen Produkte kristallisieren besser als das solvensfreie (Me₂AlH)Ni(CDT). Dabei bilden sich die Ether-Addukte **2a** und **2b**, obwohl (Me₂AlH)_n selbst keine definierten Ether-Addukte liefert. Insbesondere von den Amin-Liganden geht ein deutlicher Stabilisierungseffekt aus, so daß neben den CDT-Komplexen **2c** und **2d** auch das Bis(ethen)nickel(0)-Derivat **4** isolierbar ist.

Bezüglich des Vorliegens eines Ni ··· Al-Bindungskontakts konnte aus den Strukturdaten von **2c** (Ni – Al 2.73 Å) keine eindeutige Aussage gewonnen werden. Bemerkenswert ist jedoch, daß **2c** mit einem Element der III. Hauptgruppe sich in eine Reihe bereits bekannter Verbindungen [Ni(0)–LiR und Ni(0)–MgR₂] mit gleichfalls mittellangen Ni–Li- (2.72 Å)⁸⁾ und Ni–Mg-Bindungskontakten (2.62 Å)²⁷⁾ einfügt. Dabei zeigt die Ausbildung einer Ni– μ -H–Al-Bindung anstelle einer gleichfalls denkbaren Ni– μ -CH₃–Al-Mehrzentrenbindung, daß am Aluminium gebundener hydridischer Wasserstoff gegenüber einem Alken-stabilisierten Nickelatom eine höhere Nucleophilie entfaltet als eine am selben Hauptgruppenmetall gebundene Methylgruppe.

Durch die n-Donor-Blockierung mindestens einer Koordinationsstelle am Aluminium ist die einleitend erwähnte Nickel(0)-katalysierte Addition der Al-H-Bindungen an Alkene^{12a)} (insbesondere Ethen; weiteres Beispiel: Lit.^{11a)}) inhibiert. Andererseits lassen sich der in seiner Struktur bestimmte CDT-Komplex 2c, vor allem aber der Ethen-Komplex 4, als Modell-Verbindungen dieser Katalyse-Reaktion ansehen. In ihnen ist die Aluminiumhydrid-Komponente über den Hydridwasserstoff an Nickel(0) gebunden, das zudem von den Alkenen komplexiert wird. Nickel(0) führt somit die Aluminiumhydrid- und Alken-Komponenten für eine Hydroaluminierungsreaktion zusammen, womit eine ähnliche Wirkungsweise vorliegt wie bei der Nickel(0)-katalysierten Aluminiumalkyl/Alken-Austauschreaktion ("Nikkel-Effekt")^{23,28}. Damit ließen sich für die Nickel(0)-katalysierte Hydroaluminierungsreaktion von Alkenen ähnliche Modell-Komplexe isolieren wie zuvor schon für die vom Nickel(0) herbeigeführten Hydrolithiierungsreaktionen^{11a,29}.

Anmerkung bei der Korrektur (5. März 1990): Eine diesen Ausführungen entgegenstehende Auffassung der Wechselwirkung von Nickel(0) – Alken-Komplexen und Al – H-Verbindungen findet sich in Lit.³¹⁾. Zur Koordination von Si – H-³²⁾ und Sn – H-Verbindungen³³⁾ an Übergangsmetalle siehe angegebene Literatur.

Experimenteller Teil

Arbeitsbedingungen und Spektroskopie waren wie beschrieben^{6,8,9)}. Ni(CDT) (95proz., Mischkristallisat mit CDT⁴), Ni(C₂H₄)₃⁵, HAI(CH₃)₂¹⁷⁾ und AlH₃ in Ether³⁰⁾ wurden nach Literaturvorschriften hergestellt. 1-Azabicyclo[2.2.2]octan (Aldrich/Ega) wurde mit wenig NaAl(C₂H₃)₄ aufgeschmolzen und i. Vak. sublimiert. – Elementaranalysen: Mikroanalytisches Labor Dornis und Kolbe, Mülheim a. d. Ruhr.

(1-Azabicyclo[2.2.2]octan) dimethylaluminiumhydrid: Die Lösungen von 5.80 g (100 mmol) HAlMe₂ und 11.1 g (100 mmol) $C_7H_{13}N$ in jeweils 100 ml Pentan werden in der Kälte (-50°C) vereinigt, und der ausfallende Niederschlag wird bei 20°C gelöst. Durch Abkühlen bis auf -30°C scheiden sich große farblose Kristalle ab, die man von der Mutterlauge mit einer Kapillare befreit, zweimal mit kaltem Pentan wäscht und im Ölpumpenvak. bei 20°C trocknet. Ausb. 13.1 g (77%).

 $\begin{array}{c} C_{9}H_{20}AlN \ (169.4) \\ \text{Ber. C } 63.87 \ \text{H} \ 11.91 \ \text{Al} \ 15.94 \ N \ 8.28 \\ \text{Gef. C } 63.94 \ \text{H} \ 11.91 \ \text{Al} \ 15.80 \ N \ 8.16 \\ \end{array}$

Bis(1-azabicyclo[2.2.2]octan)dimethylaluminiumhydrid: Reaktionsdurchführung wie oben beschrieben, jedoch mit 2.90 g (50 mmol) HAIMe₂. Große farblose Kristalle.

 Dimethyl(N,N,N',N'-tetramethylethylendiamin) aluminiumhydrid: Eine Lösung von 580 mg (10.0 mmol) (CH₃)₂AlH in 30 ml Pentan wird mit 2 ml TMEDA versetzt. Bei -78 °C kristallisieren farblose Nadeln, die man nach Entfernen der Mutterlauge mit kaltem Pentan wäscht und im Ölpumpenvak. bei 20 °C trocknet. Ausb. 1.40 g (80%).

$C_8H_{23}AlN_2$ (174.3) Ber. C 55.14 H 13.30 Al 15.48 N 16.07 Gef. C 55.21 H 13.12 Al 15.42 N 16.11

(1-Azabicyclo[2.2.2]octan)aluminiumhydrid: Zu einer aus 1.90 g (50 mmol) LiAlH₄ mit H₂SO₄ hergestellten Lösung von AlH₃ in 200 ml Ether werden 5.55 g (50.0 mmol) C₇H₁₃N gegeben. Bei -30 °C kristallisieren farblose Plättchen, die man mit einer Kapillare von der Mutterlauge befreit, zweimal mit kaltem Pentan wäscht und im Ölpumpenvak. trocknet. Ausb. 6.35 (90%). Die Substanz sublimiert im Hochvak. bei 60 °C.

```
C<sub>7</sub>H<sub>16</sub>AlN (141.2) Ber. Al 19.11 Gef. Al 19.36
```

Bis(1-azabicyclo[2.2.2]octan)aluminiumhydrid: Reaktionsdurchführung wie obenstehend beschrieben, jedoch mit 11.1 g (100 mmol) $C_7H_{13}N$. Farblose Nadeln, Ausb. 9.09 g (72%).

$C_{14}H_{29}AlN_2$ (252.4)	Ber.	C 66.63	H 11.58	Al 10.69	N 11.10
	Gef.	C 66.51	H 11.28	Al 11.16	N 11.70

(trans, trans, trans-1, 5, 9-Cyclododecatrien) [(dimethylether)dimethylaluminium]- μ -hydrido-nickel(0) (**2a**): In eine bei -78 °C vorgelegte Lösung von 350 mg (6.0 mmol) HAl(CH₃)₂ in 40 ml Pentan leitet man eine Lösung (20 °C) von 1.165 g (5.0 mmol) Ni(CDT) in 15 ml Pentan so ein, daß die Temperatur der Reaktionslösung -50 °C nicht übersteigt. Bei Zusatz von 5 ml Dimethylether ändert sich die Farbe von orangerot nach rein gelb. Bei -78 °C bilden sich langsam große gelbe Kuben, die man mit einem Kapillarheber von der Mutterlauge befreit, zweimal mit kaltem Pentan wäscht und im Hochvak, bei -50 °C trocknet. Ausb. 1.24 g (76%).

> C₁₆H₃₁AlNiO (325.1) Ber. Al 8.30 Ni 18.06 Gef. Al 8.4 Ni 17.8

(trans, trans, trans-1, 5, 9-Cyclododecatrien)- μ -hydrido-[tetrahydrofuran)dimethylaluminium]nickel(0) (2b): Der wie oben erhaltenen orangeroten Pentan-Lösung von (Me₂AlH)Ni(CDT) werden bei -78 °C 2 ml THF zugefügt. Die Farbe schlägt dabei nach rein gelb um, und ein gelber kristalliner Niederschlag fällt aus, den man abfiltriert, zweimal mit kaltem Pentan wäscht und im Hochvak. bei -50 °C trocknet. Ausb. 1.49 g (85%).

> C₁₈H₃₃AlNiO (351.15) Ber. Al 7.68 Ni 16.72 Gef. Al 7.9 Ni 15.7

 $[(1-Azabicyclo[2.2.2]octan)dimethylaluminium](trans,trans, trans-1,5,9-cyclododecatrien)-\mu-hydrido-nickel(0) (2c)$

a) Der orangeroten Pentan-Lösung von (Me₂AlH)Ni(CDT) werden 555 mg (5.0 mmol) 1-Azabicyclo[2.2.2]octan in 20 ml Pentan zugefügt. Sofort fällt ein feiner gelber Niederschlag aus, den man abfiltriert, zweimal mit kaltem Pentan wäscht und im Ölpumpenvak. bei 0°C trocknet. Ausb. 1.52 g (78%).

b) Eine Lösung von 1.165 g (5.00 mmol) 95proz. Ni(CDT) in 20 ml Ether wird bei 20 °C mit einer Lösung von 845 mg (5.00 mmol) ($C_7H_{13}N$)(Me₂AlH) in 20 ml Ether versetzt. Die gelbe Reaktionslösung wird durch Filtrieren über eine D4-Fritte von festen Verunreinigungen befreit. Beim langsamen Abkühlen bis auf -78 °C kristallisieren gelbe Plättchen, die man mit einem Kapillarheber von der Mutterlauge befreit, zweimal mit kaltem Ether wäscht und im Ölpumpenvak, bei 0 °C trocknet. Ausb. 1.46 g (75%).

Die für kurze Zeit bei 20°C beständigen Kristalle können aus Ether oder THF (0°C) umkristallisiert werden. – IR (KBr): $v(C=C) = 1540, 1515, 1475 \text{ cm}^{-1}, v(Al-H-Ni) = 1730. - 400$ MHz-¹H-NMR ([D₈]THF, -80° C): $\delta = 4.25$ (HC=), 3.06 (NCH₂), 2.05, 1.7 (CH₂, CDT), 1.9 (CH), 1.8 (CH₂, C₇H₁₃N), -0.80 (AlCH₃), -4.94 (NiHAl).

> C₂₁H₃₈AlNNi (390.2) Ber. C 64.64 H 9.82 Al 6.91 N 3.59 Ni 15.04 Gef. C 64.69 H 9.75 Al 6.90 N 3.67 Ni 14.90

(trans,trans,trans-1,5,9-Cyclododecatrien)-µ-hydrido-[(N,N,N',N'-tetramethylethylendiamin)dimethylaluminium]nickel-(0) (2d): Reaktionsdurchführung wie nach a) für 2c in insgesamt 100 ml Pentan und unter Zusatz von 5 ml TMEDA. Nach kurzer Zeit fallen schneeförmige gelbe Kristalle aus, die man nach Abtrennung der Mutterlauge zweimal mit kaltem Pentan wäscht und im Ölpumpenvak. bei - 30°C trocknet. Ausb. 1.78 g (90%). Der in Ether und THF bei -78 °C gut lösliche Komplex zersetzt sich bei 0°C. Beim Lösen in THF wird der TMEDA-Ligand freigesetzt. ---IR (KBr, -30° C): $v(Al - H - Ni) = 1700 \text{ cm}^{-1}$, v(C = C) =1517. - 80-MHz⁻¹H-NMR ([D₈]THF, -80° C): $\delta = 4.19$ (HC =), 1.96, 1.61 (CH₂, CDT), 2.62 (NCH₂), 2.30 (NCH₃), -0.73 (AlCH₃), -4.69 (AlHNi).

> C₂₀H₄₁AlN₂Ni (395.25) Ber. C 60.78 H 10.46 Al 6.83 N 7.09 Ni 14.85 Gef. C 61.11 H 9.73 Al 6.78 N 7.19 Ni 15.03

[(1-Azabicyclo[2.2.2]octan)aluminiumhydrid](trans,trans,trans-1,5,9-cyclododecatrien)nickel(0) (3): Eine Lösung von 1.165 g (5.0 mmol) 95proz. Ni(CDT) in 20 ml Ether läßt man so in eine bei -78°C vorgelegte Lösung von 706 mg (5.0 mmol) (C₇H₁₃N)(AlH₃) in 80 ml Ether einlaufen, daß die Mischungstemperatur - 30°C nicht überschreitet. Aus der gelben Reaktionslösung kristallisieren bei - 78 °C gelbe Kristalle, die man nach Entfernen der Mutterlauge zweimal mit kaltem Pentan wäscht und im Ölpumpenvak. bei -30° C trocknet. -80° MHz⁻¹H-NMR ([D₈]THF, -80° C): $\delta =$ 4.22(-CH=).

> C₁₉H₃₄AlNNi (362.2) Ber. C 63.01 H 9.46 Al 7.45 N 3.87 Ni 16.21 Gef. C 62.89 H 9.31 Al 7.21 N *) Ni 16.28

[(1-Azabicyclo[2.2.2]octan)dimethylaluminium]bis(ethen)-µ-hydrido-nickel(0) (4)

a) Aus $Ni(C_2H_4)_3$: Eine aus 1.165 g (5.00 mmol Ni) 95proz. Ni(CDT) und Ethen hergestellte Lösung von Tris(ethen)nickel(0) in 20 ml Pentan wird bei -15° C mit 845 mg (5.00 mmol) (C₇H₁₃N)(Me₂AlH) in gleichfalls 20 ml Pentan versetzt. Die Reaktionslösung wird durch Filtrieren über eine D4-Kühlmantelfritte von schwerlöslichen Verunreinigungen befreit. Aus dem gelbroten Filtrat kristallisieren bei -78 °C hellbraune Nadeln, die man nach Abhebern der Mutterlauge zweimal mit kaltem Pentan wäscht und im Ölpumpenvak, bei – 50°C trocknet. Ausb. 950 mg (67%).

b) Aus $(C_2H_{13}N)(Me_2AlH)Ni(CDT)$ (2c): Einer Lösung von 1.95 g (5.00 mmol) 2c in 20 ml Pentan wird bei 0°C unter Rühren Ethen zugeführt, bis keine weitere Aufnahme erfolgt (1 h). Die zunächst hellrote Reaktionslösung färbt sich dabei blaßgelb. Die Lösung wird durch Filtrieren über eine D4-Kühlmantelfritte von schwerlöslichen Bestandteilen befreit und zur Kristallisation bei -78°C aufbewahrt. Die Isolierung des Produktes erfolgt wie unter a) beschrieben. Ausb. 990 mg (70%).

Der Komplex ist in Ether, THF, Pentan und Toluol sehr gut löslich. Als Festsubstanz und in Lösung zersetzt er sich langsam ab 0° C. - 400-MHz⁻¹H-NMR ([D₈]THF, -80°C): $\delta = 3.09$ (NCH₂), 2.43 (C₂H₄), 1.95 (CH), 1.77 ($-CH_2-$), -0.89 (AlCH₃), -5.57

(NiHAl). - 75.5-MHz-¹³C-NMR ([D₈]THF, -110 °C): $\delta = 51.05$, 47.5 (C₂H₄), 47.2 (NCH₂), 24.8 ($-CH_2-$), 21.3 (CH), -9.1 $[J(CH) = 112 \text{ Hz}, \text{AlCH}_3].$

> C13H28AlNNi (284.1) Ber. C 54.97 H 9.94 Al 9.50 N 4.93 Ni 20.67 Gef. C 55.21 H *) Al 9.90 N 4.56 Ni 19.70

Umsetzung von 4 mit COT: Aus 395 mg (1.39 mmol) 4 wurden bei der Umsetzung mit 5 ml COT 61 ml Ethen frei (1.8 C₂H₄/Ni, 90%).

[(1-Azabicyclo[2.2.2]octan)dimethylaluminium]tricarbonyl-µhydrido-nickel(0) (5): Die gelbrote Lösung von 710 mg (2.50 mmol) 4 in 5 ml Ether und 10 ml Pentan wird bei -78°C mit CO umgesetzt. Dabei fällt ein rotbrauner amorpher Niederschlag an, der über eine D4-Kühlmantelfritte bei -50°C abgetrennt wird. Aus dem nahezu farblosen Filtrat kristallisieren bei $-78\,^\circ\mathrm{C}$ innerhalb 2 d farblose Nadeln, die man mit einem Kapillarheber von der Mutterlauge befreit, zweimal mit kaltem Pentan wäscht und bei -78°C im Hochvak. trocknet. Ausb. 460 mg (59%). Die Substanz wird bei 0°C klebrig und zersetzt sich langsam bei 20°C. - IR $(KBr, -30^{\circ}C): v(Ni-H-Al) = 1670 \text{ cm}^{-1}. - 200\text{-MHz}^{-1}H^{-1}$ NMR ([D₈]THF, -80° C): $\delta = 3.04$ (NCH₂), 1.95 (CH), 1.8 (-CH₂-), -0.73 (A1CH₃), -4.31 (NiHAl).

> C₁₂H₂₀AlNNiO₃ (312.0) Ber. C 46.20 H 6.46 Al 8.65 N 4.49 Ni 18.82 Gef. C 46.04 H 6.56 Al 8.78 N 4.63 Ni 18.75

CAS-Registry-Nummern

2a: 125803-91-0 / 2b: 125803-92-1 / 2c: 125803-93-2 / 2d: 125803-94-3 / 3: 125803-87-4 / 4: 125803-88-5 / 5: 125803-89-6 / (C₇H₁₃N)(Me₂AlH): 125803-85-2 / (C₇H₁₃N)₂(Me₂AlH): 125803-85-2 / (C₇H₁₃N)₂(Me₂AlH): 125803-86-3 / C₇H₁₃N)(Me₂AlH): 125803-86-3 / C₇H₁₃N)(Me₂AlH) / C_7H₁₃N)(Me₂AlH) / C₇H₁₃N)(Me₂AlH) / C_7H₁₃N)(Me₂AlH) 125803-90-9 / (C₇H₁₃N)(AlH₃): 33959-83-0 / (C₇H₁₃N):(AlH₃): 33959-84-1 / Ni(CDT): 12126-69-1 / (Me₂AlH)Ni(CDT): 125803- $(C_7H_{13}N)_2(AlH_3)$: 95-4 / Ethen: 74-85-1

- ¹⁾ XI. Mitteilung: W. Kaschube, K. R. Pörschke, W. Bonrath, C. Krüger, G. Wilke, Angew. Chem. 101 (1989) 790; Angew. Chem. Int. Ed. Engl. 28 (1989) 772.
- ²⁾ Kristallstrukturanalyse.
- ³⁾ Abkürzungen: CDT = trans.trans.trans-1,5,9-Cyclododeca-trien; PMDTA = N,N,N',N'', N''-Pentamethyldiethylentriamin; TMEDA = N,N,N',N'', Tetramethylethylendiamin.
- ⁴⁾ B. Bogdanovic, M. Kröner, G. Wilke, Liebigs Ann. Chem. 699 (1966) 1.
- ⁵⁾ K. Fischer, K. Jonas, G. Wilke, Angew. Chem. **85** (1973) 620; Angew. Chem. Int. Ed. Engl. **12** (1973) 565.
- ⁶⁾ III. Mitteilung: K. R. Pörschke, G. Wilke, Chem. Ber. 118 (1985) 313
- ⁷⁾ IV. Mitteilung: W. Kleimann, K. R. Pörschke, G. Wilke, Chem. Ber. 118 (1985) 323. ⁸⁾ I. Mitteilung: K. R. Pörschke, K. Jonas, G. Wilke, R. Benn, R.
- Mynott, R. Goddard, C. Krüger, Chem. Ber. 118 (1985) 275. ⁹ II. Mitteilung: K. R. Pörschke, G. Wilke, R. Mynott, Chem. Ber. 118 (1985) 298.
- ¹⁰⁾ V. Mitteilung: K. R. Pörschke, W. Kleimann, G. Wilke, K. H. Claus, C. Krüger, Angew. Chem. 95 (1983) 1032; Angew. Chem.
- Int. Ed. Engl. 22 (1983) 991.
 ¹¹⁾ ^{11a} VII. Mitteilung: K. R. Pörschke, G. Wilke, J. Organomet. Chem. 349 (1988) 257. ^{11b)} R. Goddard, C. Krüger, K. R. Pörschke, G. Wilke, J. Organomet. Chem. 308 (1986) 85.
- ¹²⁾ ^{12a)} K. Fischer, Dissertation, Universität Bochum, 1973. ^{12b)} K. Fischer, K. Jonas, P. Misbach, R. Stabba, G. Wilke, Angew. Chem. 85 (1973) 1002; Angew. Chem. Int. Ed. Engl. 12 (1973) 943.
- ¹³⁾ T. Wartik, H. I. Schlesinger, J. Am. Chem. Soc. 75 (1953) 835.
- ¹⁴⁾ E. G. Hoffmann, G. Schomburg, Z. Elektrochem. 61 (1957) 1101.

^{*)} Nicht verläßlich erhalten.

- ¹⁵⁾ J. Tanaka, S. R. Smith, Inorg. Chem. 8 (1969) 265.
- ¹⁶ G. A. Anderson, A. Almenningen, F. R. Forgaard, A. Haaland, Chem. Comm. 1971, 480; Acta Chem. Scand. 26 (1972) 2315.
- ¹⁷⁾ H. Lehmkuhl, K. Ziegler in Methoden der Organischen Chemie (Houben-Weyl-Müller), 4. Aufl., Bd. 13/4, S. 58, Thieme Verlag, Stuttgart 1970.
- ¹⁸ ^{18a} F. M. Peters, B. Bartocha, A. J. Bilbo, *Can. J. Chem.* 41 (1963) 1051. ^{18b} O. T. Beachley, J. D. Berstein, *Inorg. Chem.* 12 (1973) 183.
- ¹⁹⁾ E. Bonitz, Chem. Ber. 88 (1955) 742.
- ²⁰ J. J. Eisch in Comprehensive Organometallic Chemistry (G. Wilkinson, F. G. A. Stone, E. W. Abel, Eds.), Bd. 1, S. 582ff., dort S. 595, Pergamon Press, Oxford 1982.
- ²¹⁾ K. R. Pörschke, G. Wilke, Chem. Ber. 117 (1984) 56.
- ²²⁾ D. J. Brauer, C. Krüger, J. Organomet. Chem. 44 (1972) 397; D. J. Brauer, C. Krüger, J. C. Sekutowski, J. Organomet. Chem. 178 (1979) 249; C. Krüger, K. Angermund, zitiert in Lit.²³, dort Lit.²⁷)
- ²³⁾ G. Wilke, Angew. Chem. 100 (1988) 189; Angew. Chem. Int. Ed. Engl. 27 (1988) 185.
- 24) M. J. Taylor in Comprehensive Coordination Chemistry (G. Wilkinson, R. D. Gillard, J. A. McCleverty, Eds.), Bd. 3, S. 107f., Pergamon Press, Oxford 1987.

- ²⁵⁾ B. L. Barnett, C. Krüger, Y.-H. Tsay, R. H. Summerville, R. Hoffmann, *Chem. Ber.* 110 (1977) 3900.
 ²⁶⁾ J. L. Atwood, D. C. Hrncir, R. D. Rogers, J. A. K. Howard, J. *Am. Chem. Soc.* 103 (1981) 6787.
 ²⁷⁾ Y. Mitsilvers, W. K. Rogerski, K. B. Börnshle, K. Angensund, J. Amerika, K. B. Börnshle, K. Angensund, K. B. Börnshle, K. B. Börnshle
- ²⁷⁾ X. Mitteilung: W. Kaschube, K. R. Pörschke, K. Angermund, C. Krüger, G. Wilke, *Chem. Ber.* **121** (1988) 1921.
- ²⁸⁾ IX. Mitteilung: K. R. Pörschke, G. Wilke, Chem. Ber. 121 (1988) 1913; und dort zitierte Lit.7)
- ²⁹⁾ K. Jonas, K. R. Pörschke, Angew. Chem. 91 (1979) 521; Angew. Chem. Int. Ed. Engl. 18 (1979) 488. 30) E. C. Ashby, J. R. Sanders, P. Claudy, R. Schwartz, J. Am. Chem.
- Soc. 95 (1973) 6485.
- ³¹⁾ J. J. Eisch, S. R. Sexsmith, K. C. Fichter, J. Organomet. Chem.
- ³²¹ ^{32a} U. Schubert, G. Scholz, J. Müller, K. Ackermann, B. Wörle, J. Organomet. Chem. **306** (1986) 303; U. Schubert, Adv. Organomet. Chem., im Druck. ^{32b} D. L. Lichtenberger, A. Rainer, M. Schubert, M. C. Schubert, M. C. Schubert, Activity, Activity, and M. Schubert, Chem. Science, M. Schubert, Activity, and M. Schubert, Activity, and M. Schubert, M. Schubert, M. Schubert, Activity, and M. Schubert, Science, S Chaudhuri, J. Am. Chem. Soc. 111 (1989) 3583; und dort zitierte Literatur.
- ³³⁾ U. Schubert, E. Kunz, B. Harkers, J. Willnecker, J. Meyer, J. Am. Chem. Soc. 111 (1989) 2572.

[412/89]